
SCRUM & AGILE CONTAINERS

FRAMEWORKS

INTEGRATED DEVELOPMENT
ENVIRONMENTS (IDES)

SOURCE CONTROL

DEVOPS TOOLSBUILD PIPELINES

TESTING

SECURITY VALIDATION

INFRASTRUCTURE AS
CODE/DECLARATIVE LANGUAGE

CODE REPOSITORIES

CONTAINER REGISTRIES

DEPLOYMENT AUTOMATION

KEY MANAGEMENT

PARAMETER REPOSITORIES

DEPLOYMENT &
CONFIGURATION MANAGEMENT

OVERLAY/SERVICE MESH

SECURITY

KUBERNETES ORCHESTRATION

ORCHESTRATION

MONITORING OPTIMIZATION CHANGE MANAGEMENT & ITSM

Compose

Compose

Amazon ECR

Amazon S3

Azure
Container Registry

Google Cloud
Container Registry

AWS Key
Management Service

Notary

Swarm

AKS

GKE

UrbanCode

Amazon EKS

Emacs Visual Studio

Dropwizard

Azure
Resource Manager AWS CloudFormation

AWS
Parameter Store

Azure
Key Vault Google

Secret Manager

If a Build or Test fails, review the objections and
determine the resolution, then return to the Code phase

Deliver machine-learned
optimization
recommendations to
parameter repository,
check for approval, and
dynamically rewrite
infrastructure as code
templates

If final user testing
fails, a rollback
release may be
necessary

While Test is a distinct phase, it is actually a continual part of the entire cycle. You need to be constantly validating ideas,
deployments, user experience, and features throughout the entire cycle to get rapid and continuous feedback.

• Agile, Scrum, and Kanban
• Sprint planning
• Sizing
• Task breakdown

• Dev frameworks
• Integrated development
• Environment (IDE)
• Code repository
• Checkout/pull request/commit
• Vagrant/Containers
• Sandbox
• Fast feedback

Fast feedback with a Dev
environment/framework allows for
minimum viable product (MVP)
rework.

• Continuous build
• Security checks
• NFR validation
• Working code (master)
• Fast feedback
• Fast fix
• Image build

Small tasks allow for rapid builds,
minimizing merge conflicts and
keeping master code functional at
all times. Rejected merges or
non-functional commits get
reworked.

• Unit testing
• Integration testing
• Security testing
• Immutability testing
• License validation
• Common Vulnerabilities and
 Exposures (CVE) checks
• Validation against best practices
• Clean Code validation
• Human acceptance

Automated testing is often part of
the build process, so this isn’t
always a separate phase. A
successful build is a result of
passing all validation tests.

• Code repository
• Container registry
• A/B build
• Release committed and tagged
• Release notes
• Release documentation
• Automated documentation
• Operational documentation
• Operational handover

• Traffic/user migration
• A/B or canary testing
• Real user acceptance
• NFR validation
• Feature validation

Testing can continue through the
Deploy phase, especially when there
is a change to end-user experience.
This allows for final consumer
feedback before committing to the
full release.

• Operational processes
• DevOps ownership
• On-call rotas
• Documentation improvements
• Operational feedback

At this point, rollback should not be
an option (unless some other
processes have failed), but the
feedback and improvement process
starts.

• Observability
• Reliability
• Record NFRs and
 provide feedback
• Continuous testing
• Continuous penetration testing

Analysis of key application
(transaction latency, tps, etc) &
infrastructure metrics (cpu,
memory, disk i/o, etc) to determine
optimization possibilities.

• Application utilization pattern
 (via machine learning)
• Generation of business
 intelligence reports for app
 owners’ approval

ITSM technologies facilitate
the approval acquisition
process for optimization insights.
Insights that are approved are fed
back to the deployment phase for
execution.

Sizing/Breakdown
Release often in microincrements
and always deliver functional
software. This is key to being on
top of user requirements and
delivering relevance.

Non-Functional
Requirements (NFRs)
Define NFRs early and ensure they
are part of the development cycle
or sprint and not an afterthought.

Keep it Simple, Stupid (KISS)
Don’t try to be clever—write
functional code that is elegant
but simple and easy to maintain.

DevSecOps
Include security as early as
possible in the development cycle
to avoid applying security
hardening with brute force later.

Test-Driven Development
(TDD)
Write the tests that need to be
passed before writing any code.

Behavior-Driven
Development (BDD)
Develop to deliver business
features rather than technical
features. These business features
need to be objective, attainable,
and monitorable.

TEST RELEASECODEPLAN BUILD DEPLOY OPERATE MONITOR ANALYZE COLLABORATE

CONTINUOUS INTEGRATION CONTINUOUS DELIVERY CONTINUOUS OPTIMIZATION

© 2020 Cirba Inc. d/b/a Densify. All rights reserved.

The framework below endeavors to
demystify these complexities and create
an accepted, best-of-breed lifecycle that
provides a solid foundation, around which
you can build your organization’s
plan—and achieve your goals.

The arrival of modern technologies like containers and the
emergence of architectures like Continuous Integration and
Continuous Delivery (CI/CD) have made the practice of
software development increasingly complex—and
overwhelming. There is no best practice guide, no one size
fits all, and good looks different for everyone.

